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ABSTRACT 

 
The Heston Model, widely used in financial markets to characterize stochastic 
volatility, could potentially be useful in accounting for the impact of volatility in the 
broad field of medicine. This theoretical article highlights the potential uses of the 
Heston Model to quantify volatility in healthcare, focusing on epidemiology and 
pharmacology. Conceptually, the ability of the model to quantify unpredictability 
could provide insight into complex medical processes with variable variability. 
Rigorous testing would be required to determine the feasibility and validity of 
applying a financial model to biological processes. Nonetheless, the hypothetical 
connections between financial market volatility and volatility in medicine merit 
further exploration. This theoretical article explores a broad overview of possible 
applications of the Heston Model to the medical field. 
  
Keywords: Stochastic volatility; Heston model; uncertainty; variance; biostatistics. 
 

1. INTRODUCTION 
 
The Heston Model is used to model stochastic volatility in the field of finance. While 
it has become widely adopted for helping predict price movements in equity 
options, there have been limited but no rigorous attempts to see if the model could 
have wider applicability and potentially be useful in the broad field of medicine. 
This exploratory article looks at potential applications in medicine by looking at 
disease forecasting in epidemiology and individualized drug dosing in clinical 
pharmacology. The rationale is that the model’s capabilities in quantifying 
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unpredictable volatility in financial markets could translate to characterizing 
volatility in biological contexts. 
 
Advocates for enhanced mathematical applications in medicine have called for a 
two-way exchange of methodologies between fields, applying quantitative tools 
like physics and engineering to clinical medicine. As Amig´o and Small detail in 
their overview of mathematical methods in medicine, ”The ultimate reason for the 
ubiquity of mathematics in modern science is the necessity of mathematical 
thinking to understand complex phenomena” [1]. While mathematical finance may 
seem an unlikely source of healthcare insight, the versatility of techniques like the 
Heston Model merits open-minded exploration. Of course, rigorous validation is 
essential before clinical adoption. 
 

2. THE HESTON MODEL 
 
Introduced by Steven Heston in 1993, the Heston Model is a mathematical frame- 
work that describes the evolution of volatility in financial markets [2]. Unlike 
constant volatility models, the Heston Model proposes that volatility follows a 
stochastic process that fluctuates over time. This widely recognized stochastic 
volatility model used for pricing European options suggests that volatility 
undergoes mean reversion, returning to a long-term average. This feature enables 
the Heston Model to represent the volatility smile, where the implied volatility of 
options increases as the option is further out of the money [Fig. 1]. This diverges 
from predictions by the classic Black-Scholes model, which assumes static 
volatility [3]. 
 

 
 

Fig. 1. The volatility smile 
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The Heston Model is defined by two stochastic differential equations: one for the 
price of the asset and the other for the variance of the price of the asset. The asset 
price follows a geometric Brownian motion [4], and the variance follows a mean-
reverting square-root process [5]. The model is mathematically expressed as: 
 

𝑑𝑆𝑡 = 𝜇𝑆𝑡𝑑𝑡 + √𝑉𝑡𝑆𝑡𝑑𝑊𝑡
𝑆 

 

𝑑𝑉𝑡 = 𝜅(𝜃 − 𝑉𝑡)𝑑𝑡 + 𝜎√𝑉𝑡𝑑𝑊𝑡
𝑉 

 
Where: 
 
- St is the asset price at time t, 

- Vt is the variance of the asset price at time t, 

- µ is the rate of return of the asset, 
- κ is the rate of mean reversion, 

- θ is the long-term average variance, 
- σ is the volatility of the volatility, 
- W S and W v are two Wiener processes with correlation ρ. 
            t             t 
 
The ability of the Heston Model to capture stochastic volatility makes it valuable 
for traders and risk managers in financial industries, particularly for pricing options 
on volatile assets like stocks and commodities [6]. The model’s parameters, 
including the mean reversion rate (κ), long-term average variance (θ), and volatility 
of volatility (σ), are crucial in reflecting financial market dynamics. The correlation 
parameter (ρ) between the Wiener processes WS

 t and W v 
t is significant, where a 

negative ρ suggests that an increase in asset price often coincides with a decrease 
in volatility, known as the leverage effect [7]. 
 
Empirical studies demonstrate that the Heston Model, with its stochastic volatility 
feature, outperforms the Black-Scholes model, which assumes constant volatility. 
The model can be adjusted by market data, leading to improved precision in pricing 
options for different strike prices and expiration periods [8]. 
 
Incorporating the Heston Model into trading and risk management strategies can 
significantly enhance market analysis. For instance, the model’s parameters can 
be estimated from market data, allowing traders to use it for real-time pricing and 
hedging options [9]. The model is particularly adept at pricing exotic options, such 
as Asian or barrier options, which are sensitive to the underlying asset’s volatility 
path. Moreover, the Heston Model can be extended to multi-asset options by 
introducing additional correlated variance processes for each asset. 
 
The calibration of the Heston Model to market data is a non-trivial task that often 
requires sophisticated numerical techniques, such as the Fourier transform 
methods or the use of characteristic functions [10]. Once calibrated, the model can 
be used to generate a volatility surface that is consistent with observed market 
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prices of options, which in turn can be used to price and hedge new option 
contracts. 
 
Extensions of the Heston Model framework, such as Heston++ [11] and the rough 
Hawkes Heston [12], also facilitate the incorporation of jumps or spikes in volatility, 
which can occur due to market events or announcements. These extensions of the 
model can be particularly useful given that sudden shifts in volatility are common 
and can have a significant impact on option prices. 
 
In more recent developments, the Heston Model has been combined with machine 
learning techniques to further enhance its predictive power [13]. Using artificial 
neural networks to approximate the distribution of the underlying asset, 
researchers have shown the potential for an even greater accuracy in option 
pricing. 
 
Applications of the Heston Model may go beyond financial markets, but so far have 
remained focused on economic forces. For example, in energy economics, it has 
been utilized to forecast the market volatility of energy generation [14]. This 
includes adjusting the model to account for seasonal patterns, spikes, or long-term 
trends in energy generation or consumption. By doing so, the model has shown 
potential for predicting financial, operational, and strategic risks in various 
industries (Reichert and Souza, 2022). However, the model’s adaptability could 
allow it to be applied even more widely, outside of finance and economics, to other 
fields where stochastic volatility is a factor. 
 
The fundamental principle of the Heston Model is straightforward: volatility 
fluctuates randomly but tends to return to its average level over time. The concept 
of accounting for random variability (i.e., stochastic volatility) almost certainly is not 
restricted to financial applications. Here, we look at potential medical applications 
in epidemiology and pharmacology. 
 

3. STOCHASTIC VOLATILITY IN MEDICINE 
 

3.1 ARCH and GARCH 
 
Stochastic volatility, a concept deeply rooted in financial market analysis, has also 
been applied in medical research, particularly through the use of ARCH 
(Autoregressive Conditional Heteroskedasticity) and GARCH (Generalized ARCH) 
models. Originally developed for economic time series data, these models have 
been adopted to the unique demands of medical data analysis, offering a 
sophisticated approach to understanding the erratic nature of biological variables. 
 
The ARCH model, introduced by Robert Engle in 1982 [15], revolutionized how we 
perceive time-series data by allowing the volatility to change over time based on 
past shocks or errors. The core premise of this model is that current volatility is a 
function of the magnitude of previous time periods’ errors, making it particularly 
suitable for datasets where this kind of time-lagged effect is prominent. In 
medicine, this translates to understanding how past events (like a dose of 
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medication or a stress episode) affect current physiological states, such as blood 
pressure or heart rate variability. 
 
Building on ARCH, the GARCH model, formulated by Tim Bollerslev in 1986 [16], 
adds another layer of complexity in that it incorporates not just past errors, as in 
ARCH, but also past variances. This addition makes GARCH more adaptable to 
scenarios where the volatility itself has memory. In medical contexts, this 
potentially provides a more accurate way to model phenomena like the fluctuation 
of hormone levels or the variability in response to treatment in chronic diseases. 
 
Variability of variability is well known and accounted for in multiple clinical settings. 
For example, there is variability in the heart rate variability. This is known to 
fluctuate throughout the day, with the maximum volatility typically occurring at night 
[17]. On the other hand, the variability of the resting metabolic rate is similar in the 
morning and at night [18]. This changing variability in heart rates could be more 
thoroughly understood through stochastic models, offering deeper insights into 
cardiac health [19]. 
 
Other medical areas that have demonstrated stochastic variability include general 
brain activation, as demonstrated by high-frequency activity [20]. Epilepsy has 
showed a similar pattern of stochastic volatility [21]. Also, using non-constant 
variance when modeling population growth has been shown to be helpful in 
capturing the volatility and heterogeneity in historical population data [22]. 
 

3.2 Ornstein-Uhlenbeck 
 
The Ornstein-Uhlenbeck (OU) process is another stochastic model that has been 
utilized in medicine, in particular neurology [23]. While the OU process and the 
Heston Model offer frameworks for modeling stochastic processes, they differ 
significantly in their approach to volatility. The OU process models stochastic 
volatility with a linear reversion towards the mean, while the Heston Model utilizes 
a square root reversion. In the OU process, the deviation from the mean decays 
exponentially over time, which is an attractive feature for modeling biological 
phenomena where such linear mean-reverting behavior is observed. 
 
The OU process is mathematically characterized by the equation dXt = θ(µ−Xt)dt 

+ σdWt, where θ is the speed of reversion to the mean level µ, σ is the scale of the 

process, and dWt is a standard Wiener process. 

 
While the Heston Model’s square root reversion is adept at capturing the volatility 
dynamics observed in financial markets, the OU process’s linear reversion is more 
suited to natural decay patterns. The OU process has been used more frequently 
in biological contexts because it stabilizes around some equilibrium point, making 
it suitable for modeling various biological phenomena [24]. 
 
However, taking into account a more complex model of volatility, as provided by 
the Heston Model, can potentially improve the modeling of several dynamic 
processes. Current models used in healthcare often assume static volatility. By 
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taking into ac- count stochastic volatility, predictions in multiple important 
healthcare settings could potentially be improved. 
 

3.3 Epidemiological Data Modeling 
 
The incorporation of the Heston Model in epidemiological data modeling 
represents an innovative and promising strategy, drawing a parallel between the 
stochastic nature of financial market volatility and the dynamic patterns of disease 
transmission. Known for its effectiveness in modeling the unpredictable 
fluctuations of asset prices in finance, the Heston Model provides a potentially 
valuable framework for comprehending the variable nature of infectious disease 
spread, which is similarly influenced by a range of factors that can either mitigate 
or amplify transmission rates. This variability is characterized by its stochastic 
rather than constant nature. This variability, characterized by its stochastic nature, 
aligns with the principles of stochastic integration [25], highlighting the fundamental 
role of stochastic processes in accurately modeling complex systems like disease 
transmission. This potential for enhanced modeling ac- curacy is further 
underscored by the methods of quantitative risk management, which provide a 
comprehensive understanding of managing uncertainties in complex systems [26]. 
Adapting the Heston Model, or its essential components, for use in epidemiological 
modeling holds significant potential for enhancing the accuracy of predictive 
models and the efficacy of public health initiatives. This cross-disciplinary 
application promises to contribute to more robust epidemiological models, thereby 
improving preparedness and response to public health challenges. 
 
The Heston Model’s ability to incorporate shocks or spikes in volatility aligns well 
with modeling the effects of public health interventions. Campaigns like vaccina- 
tion drives or policy changes such as lockdowns can dramatically influence 
disease transmission rates and variability in a manner akin to market-moving news 
events in finance. Additionally, the impact of social behaviors on disease 
transmission is analogous to market sentiment in finance, where changes in 
behavior, whether spontaneous or policy-induced, significantly affect disease 
spread. The model could treat these interventions as volatility shocks. 
 
Additionally, the Heston Model can capture dynamic changes in volatility levels, 
making it suitable for modeling different phases of an epidemic. In the initial stage, 
there may be high uncertainty and variance in transmission patterns, analogous to 
an emerging new stock with unpredictable price changes. As immunity builds or 
mitigation measures roll out, this volatility may stabilize, similar to the maturation 
of an asset class. 
 
The mean-reverting property also suits infection dynamics that tend to follow a 
wave-like surge pattern, periodically returning to an endemic level after each 
outbreak peak. This is analogous to how market volatility spikes around events but 
ultimately reverts to a mean range in calm periods. 
 
Using the Heston Model to model the changing variability or volatility in disease 
trans- mission rates can enable public health officials to develop more dynamic 
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strategies. High predicted volatility in spread rates might necessitate more rigorous 
interventions, while low volatility could indicate a period of stability, allowing for the 
relaxation of certain measures. 
 
The core of the Heston Model is its mean-reverting stochastic volatility. This 
contrasts with traditional epidemiological models, which typically employ fixed 
parameters, lacking the flexibility to adapt to real-time changes in disease 
dynamics. 
 

3.4 Empirical Study 
 
To demonstrate the applicability of the Heston Model, consider a simulated 
outbreak scenario. Using historical data on influenza spread, we can parameterize 
the Heston Model to mimic the observed patterns. The mean-reverting property is 
particularly insightful here, as it captures the tendency of disease spread to 
fluctuate around a long-term mean, influenced by factors like seasonal changes, 
population immunity, and public health interventions. 
 
Utilizing this mean-reverting feature to address variability in volatility of disease 
spread can potentially offer a more nuanced understanding and management of 
disease transmission dynamics, potentially leading to more informed and effective 
public health responses. 
 
While periodicity in epidemiology refers to predictable, regular cycles of disease 
outbreaks, mean-reversion, as modeled by the Heston Model, offers a more 
nuanced view. It suggests that while disease spread can fluctuate significantly due 
to external shocks (e.g., super-spreader events), it tends to return to a baseline 
level, influenced by long-term factors like herd immunity and seasonal variations. 
This aspect of the Heston Model could be particularly valuable in predicting the 
course of diseases that exhibit both sudden outbreaks and periods of relative calm. 
 

3.5 Drug Efficacy and Dosage Optimization 
 
Applying a variability parameter to drug efficacy and dosage optimization accounts 
for the broad differences among individuals due to genetic, environmental, and 
lifestyle factors. Similar to the way asset prices vary with market conditions, 
individual re- sponses to drugs can fluctuate according to numerous factors. The 
effectiveness of a drug changes over time, influenced not only by the development 
of resistance or changes in disease pathology but also by alterations in patient 
behavior and physiology. 
 
Understanding the variance in drug response allows clinicians to optimize dosage 
sched- ules for individual patients. This optimization involves adjusting the amount 
of drug administered, the frequency of dosing, or the duration of the dosing interval 
to maintain efficacy while minimizing side effects and reducing waste. At the 
population level, accounting for stochastic volatility can inform public health 
decisions, such as determining appropriate medication stockpiles. 
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3.6 Empirical Application 
 
Consider a new medication designed to decrease hard cardiac events in high-risk 
patients. By simulating the varying and unpredictable responses of individual 
patients, dose titration could potentially be improved. Stochastic volatility metrics 
could incorporate diverse variables such as the age of the patient, existing health 
conditions, and genetic predispositions. In addition, it could account for periodic 
variables such as daily or seasonal cycles as well as more random shocks to the 
system, such as unexpected stressors (e.g., a death in the family or a turn in world 
events). In this manner, the Heston Model could potentially enhance patient-
specific treatments and optimize healthcare resources. 
 
The potential of the Heston Model in clinical pharmacology lies in its ability to 
provide a structured approach to understanding and managing the inherent 
variability in drug response over time and among different individuals, taking into 
account unexpected, random events that affect their unique physiology. Through 
improved modeling, there is the potential to reduce costs and side effects while 
maximizing drug efficacy. 
 

4. DISCUSSION 
 
The Heston Model, a pioneering contribution to stochastic modeling in finance, is 
distinguished by its incorporation of fluctuating volatility, a defining characteristic 
of its design. The underlying assumption supporting this model posits that volatility 
adheres to a mean-reverting process, indicating a propensity to return to a long-
term average. This attribute is pivotal to the model’s capacity to capture the 
dynamic essence of volatility, presenting a sophisticated approach compared to 
models assuming static volatility. 
 
However, the assumption of mean reversion poses certain challenges, especially 
when utilized beyond the financial domain, such as in health care. In varied 
applications, the phenomenon being modeled may not conform to the mean-
reverting pattern assumed by the model. Consequently, the Heston Model may not 
accurately reflect the true behavior of the studied variable, potentially resulting in 
analytical inaccuracies. This is evident in scenarios like epidemiological studies or 
drug efficacy trials, where the studied variable’s variability can exhibit persistent 
trends or shifts beyond the model’s anticipated time frame. 
 
Another aspect to consider is the model’s dependence on the theory of mean 
reversion and specific parameters that define the rate of mean reversion, the long-
term average of the variable, and the variance of the variable itself. Accurately 
estimating these parameters is crucial for the model’s effectiveness. However, 
challenges associated with estimating parameters, especially in the dynamic realm 
of biological phenomena and the limitations inherent in historical data as a basis 
for predicting future trends, can make this task challenging. Therefore, while the 
Heston Model represents a significant advancement in stochastic modeling, its 
effectiveness is constrained by its dependence on the theory of mean reversion 
and the challenges associated with estimating parameters. These limitations 
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should be carefully considered when applying the model in diverse fields, 
particularly in medicine, where atypical patterns of variability are common. 
 
Beyond the potential applications proposed in this article, exploring the adoption 
of the Heston Model in medicine carries a secondary benefit of spurring 
interdisciplinary awareness and mathematical literacy. Having healthcare experts 
grow conversant in sophisticated financial economics tools like stochastic volatility 
models facilitates better exchange of quantitative methodologies across fields. 
Just as statistical fragility gauges the reliability of research findings [27], 
measurements of uncertainty in financial markets could help provide improved 
interpretations of data variability and stability in biological systems. With the lines 
blurring between industries in a data-rich world, propagating versatile 
mathematical frameworks nurtures the communication channels and level field 
needed for the cross-pollination of ideas. Techniques proven in complex domains 
like markets can find an innovative second life in medicine. Medical challenges can 
equally drive the engineering of new solutions. These opportunities rely on a 
shared vocabulary at the mathematical interface of disciplines. 
 

5. CONCLUSION 
 
The inherent unpredictability and volatility in biological and medical systems at 
times parallel the stochastic behavior of financial markets that the Heston Model is 
designed to characterize. Just as this model captures the dynamics of fluctuating 
asset prices, its techniques for quantifying volatility could shed light on the erratic 
variations in multiple areas of medicine, including diverse applications such as 
disease transmission and pharmaceutical dosing. The rigorous validation of the 
Heston Model in finance lends credibility to its versatile modeling approach being 
applicable more broadly. 
 
The parallels between financial systems and healthcare provide a reasonable 
theoretical justification for exploring the utility of the model with empirical research. 
Just as the model evolved from its options pricing origins to become a widely used 
financial tool, rigorous validation could transform its medical applications from 
speculative hypotheses into clinically useful practice. Extending an established, 
versatile financial model to other domains, such as medicine, represents a worthy 
interdisciplinary endeavor with promise. Exploration of potential applications 
requires caution and a rigorous analysis. Nevertheless, the potential benefits are 
worth the effort. 
 

COMPETING INTERESTS 
 
Author has declared that no competing interests exist. 
 

REFERENCES 
 
1. Amig´o JM, Small M. Mathematical methods in medicine: neuro-science, 

cardiology and pathology. Philosophical Transactions. Series A, 
Mathematical, Physical and Engineering Sciences. 2017;375. 



 
 
 

Contemporary Perspective on Science, Technology and Research Vol. 3 
Quantifying Uncertainty: Potential Medical Applications of the Heston Model of Financial Stochastic 

Volatility 
 

 

 
101 

 

2. Heston SL. A closed-form solution for options with stochastic volatility with 
applications to bond and currency options. Review of Financial Studies. 
2023;6:327–343. ISSN: 0893-9454, 1465-7368.  
Available:https://academic.oup. com/rfs/article- lookup/doi/10 .1093 /rfs/6 .2 
.327 (Apr. 1993). 

3. Black F, Scholes M. The pricing of options and corporate liabilities. The 
Journal of Political Economy. 1973;81:637. 

4. Stojkoski V, Sandev T, Basnarkov L, Kocarev L, Metzler R. Generalised 
geometric brownian motion: Theory and applications to option pricing. 
Entropy (Basel, Switzerland) 22 (Dec. 2020). 

5. Higham DJ, Mao X. Convergence of Monte Carlo simulations involving the 
mean-reverting square root process. Journal of computational Finance. 
2005;8:35–61. 

6. Desmettre S, Korn R, Sayer T. In currents in industrial mathematics: From 
concepts to research to education (eds Neunzert, H. & Pr¨atzel- Wolters, 
D.) 351–400 (Springer Berlin Heidelberg, 2015). ISBN: 978-3-662- 48257-
5. 

7. Mr´azek M, Posp´ıˇsil, J. Calibration and simulation of Heston model. Open 
Mathematics 15, 679–704. ISSN: 2391-5455.  
Available:https://www.degruyter. com/document/doi/10.1515/math- 2017- 
0058/html (2023) (May 23, 2017). 

8. Wang X, He X, Zhao Y, Zuo Z. Parameter estimations of heston model 
based on consistent extended Kalman filter. IFAC-Papers OnLine. 
2017;50:14100–14105 (July). 

9. Ganti A. Heston model: Meaning, overview, methodology Sept. 2022. 
Available:https://www.investopedia.com/terms/h/heston-model.asp. 

10. Carr P, Madan D. Option valuation using the fast Fourier transform. The 
Journal of Computational Finance. 1999;2:61–73. 

11. Pacati C, Pompa G, Ren`o R. Smiling twice: The Heston++ model. Journal 
of Banking and Finance. 2018;96:185–206. 

12. Bondi A, Pulido S, Scotti S. The rough hawkes heston stochastic volatility 
model. SSRN Electronic Journal; 2022. 

13. Klingberg O, Tisell V. Deep Learning and the Heston Model: Calibra- tion 
and Hedging (Undergraduate thesis) July 2020.  
Available:https://gupea.ub. gu. se/ bitstream/ handle/ 2077 / 65464 / gupea_ 
2077 _ 65464 _ 1 . pdf? sequence=1. 

14. Reichert B, Souza AM. Can the heston model forecast energygeneration? 
A systematic literature review. International Journal of Energy Economics 
and Policy. 2022;12:289–295. 

15. Engle RF. Autoregressive conditional heteroscedasticity with estimates of 
the variance of United Kingdom Inflation. Econometrica: Journal of the 
Econometric Society. 1982;50:987. 

16. Bollerslev T. Generalized autoregressive conditional heteroskedasticity. 
Journal of Econometrics. 1986;31:307–327. 

17. Lin J. et al. Circadian rhythms in cardiovascular function: Implications for 
cardiac diseases and therapeutic opportunities. Medical Science Monitor. 
2023;29:e942215 (Nov.). 



 
 
 

Contemporary Perspective on Science, Technology and Research Vol. 3 
Quantifying Uncertainty: Potential Medical Applications of the Heston Model of Financial Stochastic 

Volatility 
 

 

 
102 

 

18. Haugen HA, Melanson EL, Tran ZV, Kearney JT, Hill JO. Variability of 
measured resting metabolic rate. The American Journal of Clinical Nutrition. 
2003;78:1141–1145. 

19. Rogovoy NM et al. Hemodialysis procedure-associated autonomic im- 
balance and cardiac arrhythmias: Insights from continuous 14-Day ECG 
Monitoring. Journal of the American Heart Association. 2019;8:e013748. 

20. Burke JF, Ramayya AG, Kahana MJ. Human intracranial high- frequency 
activity during memory processing: Neural oscillations or stochastic 
volatility? Current Opinion in Neurobiology. 2015;31:104–110. 

21. Follis JL, Lai D. Modeling volatility characteristics of epileptic EEGs using 
GARCH models. Signals. 2020;1:26–46. 

22. Abel GJ, Bijak J, Raymer J. A comparison of official population projections 
with Bayesian time series forecasts for England and Wales. Population 
Trends. 2010;92–111. 

23. Abutaleb A, Abdelaleem H, Hewedy K. Stochastic models for the EEG 
frequencies. International Journal of Signal Processing. 2021;6:14–32. 

24. Giorgini LT, Moon W, Wettlaufer JS. Analytical survival analysis of the 
ornsteinuhlenbeck process. Journal of Statistical Physics. 2020;181:2404– 
2414. 

25. Pascucci A. in PDE and martingale methods in option pricing. 2011;139–
166 (Springer Milan). ISBN: 978-88-470-1780-1. 

26. Karatzas I, Shreve SE. In Methods of mathematical finance 1–35 (Springer 
New York). ISBN: 978-0-387-22705-4; 1998. 

27. Heston TF. The percent fragility index. International Journal of Scientific 
Research. 2023;12:9–19.  
Available:https://zenodo.org/records/8215816 

 
 

  



 
 
 

Contemporary Perspective on Science, Technology and Research Vol. 3 
Quantifying Uncertainty: Potential Medical Applications of the Heston Model of Financial Stochastic 

Volatility 
 

 

 
103 

 

Biography of author(s) 
 

 
 
Thomas F. Heston (MD) 
Department of Medical Education and Clinical Sciences, Washington State University, Spokane, USA and 
Department of Family Medicine, University of Washington, Seattle, USA. 
 
He is a physician-researcher affiliated with Washington State University and the University of Washington 
(USA). His research focuses on applying emerging technologies like artificial intelligence and blockchain 
technologies to address challenges in clinical medicine. He has over 30 years of clinical experience. He 
completed his internship at Duke University, his residency training at Oregon Health Sciences University, 
and his fellowship at Johns Hopkins University. He is a Fellow of the American Academy of Family 
Physicians, the American Society of Nuclear Cardiology, and the American College of Nuclear Medicine. 
___________________________________________________________________________________ 

© Copyright (2024): Author(s). The licensee is the publisher (B P International). 
 
Peer-Review History:  
This chapter was reviewed by following the Advanced Open Peer Review policy. This chapter was thoroughly checked to 
prevent plagiarism. As per editorial policy, a minimum of two peer-reviewers reviewed the manuscript. After review and 
revision of the manuscript, the Book Editor approved the manuscript for final publication. Peer review comments, comments 
of the editor(s), etc. are available here: https://peerreviewarchive.com/review-history/2797G 
 


